On some Rado numbers for generalized arithmetic progressions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On some Rado numbers for generalized arithmetic progressions

The 2-color Rado number for the equation x1 + x2 − 2x3 = c, which for each constant c ∈ Z we denote by S1(c), is the least integer, if it exists, such that every 2-coloring, ∆ : [1, S1(c)]→ {0, 1}, of the natural numbers admits a monochromatic solution to x1 +x2−2x3 = c, and otherwise S1(c) = ∞. We determine the 2-color Rado number for the equation x1 + x2 − 2x3 = c, when additional inequality ...

متن کامل

On Carmichael numbers in arithmetic progressions

Assuming a weak version of a conjecture of Heath-Brown on the least prime in a residue class, we show that for any coprime integers a and m > 1, there are infinitely many Carmichael numbers in the arithmetic progression a mod m.

متن کامل

Palindromic Numbers in Arithmetic Progressions

Integers have many interesting properties. In this paper it will be shown that, for an arbitrary nonconstant arithmetic progression {an}TM=l of positive integers (denoted by N), either {an}TM=l contains infinitely many palindromic numbers or else 10|aw for every n GN. (This result is a generalization of the theorem concerning the existence of palindromic multiples, cf. [2].) More generally, for...

متن کامل

Carmichael Numbers in Arithmetic Progressions

We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x1/5 when x is large enough (depending on m). 2010 Mathematics subject classification: primary 11N25; secondary 11A51.

متن کامل

Sub-Ramsey Numbers for Arithmetic Progressions

Let the integers 1, . . . , n be assigned colors. Szemerédi’s theorem implies that if there is a dense color class then there is an arithmetic progression of length three in that color. We study the conditions on the color classes forcing totally multicolored arithmetic progressions of length 3. Let f(n) be the smallest integer k such that there is a coloring of {1, . . . , n} without totally m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2004

ISSN: 0012-365X

DOI: 10.1016/j.disc.2003.06.007